Для сравнения двух величин вы можете использовать следующий метод. Допустим, вам надо сравнить величины a и b. Запишите сначала такую строчку:
a⋁b
Здесь знак ⋁ символизирует еще неизвестный знак неравенства “больше” или “меньше”. Дальше производите над этим выражением преобразования по правилам равносильных преобразований неравенств. Учитывайте при этом, что знак поменяется на противоположный (был ⋁ станет ⋀), если обе части этого выражения домножить или разделить на отрицательное число (или если вы просто местами величины поменяете). Так проводите преобразования, пока не получите справа и слева числа или удобные для сравнения выражения.
В вашем примере сравнить можно так:
1,5⋁log23
32⋁log23
Домножим обе части выражения на 2. Так как 2>0, то знак не изменится.
3⋁2log23
3⋁log232
3⋁log29
23⋁9
8⋁9
Мы получили два числа. Их сравнить просто.
8<9
Но так как в процессе наших преобразований знак не менялся на противоположный, то и в исходном выражении 1,5⋁log23 вместо ⋁ надо поставить знак “меньше”: <.
a⋁b
Здесь знак ⋁ символизирует еще неизвестный знак неравенства “больше” или “меньше”. Дальше производите над этим выражением преобразования по правилам равносильных преобразований неравенств. Учитывайте при этом, что знак поменяется на противоположный (был ⋁ станет ⋀), если обе части этого выражения домножить или разделить на отрицательное число (или если вы просто местами величины поменяете). Так проводите преобразования, пока не получите справа и слева числа или удобные для сравнения выражения.
В вашем примере сравнить можно так:
1,5⋁log23
32⋁log23
Домножим обе части выражения на 2. Так как 2>0, то знак не изменится.
3⋁2log23
3⋁log232
3⋁log29
23⋁9
8⋁9
Мы получили два числа. Их сравнить просто.
8<9
Но так как в процессе наших преобразований знак не менялся на противоположный, то и в исходном выражении 1,5⋁log23 вместо ⋁ надо поставить знак “меньше”: <.
Получили 1,5