Обчисліть площу фігури, обмеженої параболою y²=2x і прямою у=х

Lyrryface Lyrryface    2   01.04.2022 19:44    0

Ответы
корги1 корги1  01.04.2022 19:50

Пошаговое объяснение:

y^2=2x\ \ \ \ y=x\ \ \ \ \ S=?\\x=\frac{y^2}{2} \ \ \ \ \ x=y\\\frac{y^2}{2}=y\ |*2\\ y^2=2y\\y^2-2y=0\\y*(y-2)=0\\y_1=0.\\y-2=0\\y_2=2.\ \ \ \ \Rightarrow\\S=\int\limits^2_0 {(y-\frac{y^2}{2}) } \, dy =(\frac{y^2}{2}-\frac{y^3}{2*3})\ |_0^2=(\frac{y^2}{2} -\frac{y^3}{6})\ |_0^2=\frac{2^2}{2}-\frac{2^3}{6}-(\frac{0^2}{2}-\frac{0^3}{6})=\\ =\frac{4}{2} -\frac{8}{6} -0=2-\frac{4}{3}=2-1\frac{1}{3}=\frac{2}{3}.

ответ: S≈0,66667 кв. ед.


Обчисліть площу фігури, обмеженої параболою y²=2x і прямою у=х
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика