Нужно решение на этот пример ! y'+3y=xe^-3x , y(0)=0

4el2 4el2    2   26.09.2019 19:01    4

Ответы
losangelina23 losangelina23  08.10.2020 20:54
1) y' + 3y = 0
    y' = -3y
\frac{dy}{dx} =-3y\\ \frac{dy}{y} = -3 dx \Rightarrow y=Ce^{-3x}
2) 
y=C(x)e^{-3x} \\ y' = C'(x)e^{-3x}-3C(x)e^{-3x} \\
C'(x)e^{-3x}-3C(x)e^{-3x}+3C(x)e^{-3x} = xe^{-3x}\\
C'(x)e^{-3x} = xe^{-3x}\\
C'(x) = x\ \Rightarrow C(x) = \frac{1}{2}x^2+ \widetilde {C} \\
\Rightarrow y=(\frac{1}{2}x^2+ \widetilde {C})e^{-3x}\\
y(0)=0 \Rightarrow (\frac{1}{2}*0^2+ \widetilde {C})e^{0}=0 \ \Rightarrow \widetilde {C} =0\\
\\ y=\frac{1}{2}x^2e^{-3x}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика