Незнайка написал три различных шестизначных числа. из каждого числа он вычел число, образованное его тремя первыми цифрами (не меняя порядка цифр) в результате незнайка получил три одинаковые разности. докажите, что он не умеет считать
Если A – число, образованное тремя первыми цифрами шестизначного числа, B – число, образованное тремя последними цифрами, то само число равно 1000A + B, а разность между самим числом и числом, образованным первыми тремя цифрами, равна 1000A + B - A = 999A + B.
По условию были даны различные числа 1000A₁ + B₁, 1000A₂ + B₂, 1000A₃ + B₃. Предположим, соответствующие им разности 999A₁ + B₁, 999A₂ + B₂, 999A₃ + B₃ равны.
999A₁ + B₁ = 999A₂ + B₂ ↔ 999(A₁ - A₂) = B₂ - B₁ Заметим, что если равны A, то из равенства последует, что равны и B, и, наоборот, из равенства B следует равенство A. При этом шестизначные числа равны, чего быть не должно. Значит, A₁ ≠ A₂, B₂ - B₁ должно делиться на 999. Поскольку B₁ и B₂ не превосходят 999, так может быть, только если |B₂ - B₁| = 999, одно из B равно 0, другое 999, при этом A отличаются на 1.
Аналогично, B₃ равно 0 или 999. Каждое из трёх B принимает одно из двух значений, по принципу Дирихле найдутся два числа, у которых B совпадают. Но тогда совпадают и A, а эти числа равны, что запрещено.
По условию были даны различные числа 1000A₁ + B₁, 1000A₂ + B₂, 1000A₃ + B₃. Предположим, соответствующие им разности 999A₁ + B₁, 999A₂ + B₂, 999A₃ + B₃ равны.
999A₁ + B₁ = 999A₂ + B₂ ↔ 999(A₁ - A₂) = B₂ - B₁
Заметим, что если равны A, то из равенства последует, что равны и B, и, наоборот, из равенства B следует равенство A. При этом шестизначные числа равны, чего быть не должно. Значит, A₁ ≠ A₂, B₂ - B₁ должно делиться на 999. Поскольку B₁ и B₂ не превосходят 999, так может быть, только если |B₂ - B₁| = 999, одно из B равно 0, другое 999, при этом A отличаются на 1.
Аналогично, B₃ равно 0 или 999. Каждое из трёх B принимает одно из двух значений, по принципу Дирихле найдутся два числа, у которых B совпадают. Но тогда совпадают и A, а эти числа равны, что запрещено.
Значит, Незнайка ошибся в расчётах.