составляем систему уравнений
y=x^2+4;
x+y=6
и находим общие точки, т.е. точки пересечения
выражаем из второго уравнения y и приравниваем их значения
y=6-x.
x^2+4=6-x, приводим подобные слагаемые
x^2+x=6-4
x^2+x-2=0, решаем получившееся уравнение
По формулам Виета
x1+x2=-1
x1*x2=(-2)
x1=-2
x2=1
Подставляем эти значения в уравнение y=6-x
Если х=-2, тогда у=8
Если х=1, тогда у=5
Координаты точек пересечения (-2;8), (1;5)
составляем систему уравнений
y=x^2+4;
x+y=6
и находим общие точки, т.е. точки пересечения
выражаем из второго уравнения y и приравниваем их значения
y=x^2+4;
y=6-x.
x^2+4=6-x, приводим подобные слагаемые
x^2+x=6-4
x^2+x-2=0, решаем получившееся уравнение
По формулам Виета
x1+x2=-1
x1*x2=(-2)
x1=-2
x2=1
Подставляем эти значения в уравнение y=6-x
Если х=-2, тогда у=8
Если х=1, тогда у=5
Координаты точек пересечения (-2;8), (1;5)