Найти уравнение двух прямых перпендикулярных прямой 2х-у+5=0, проходящий через точки пересечения с данной прямой с осями координат соответственно. нужно для экзамена
Запишем уравнение данной прямой через угловой коэффициент у=2х+5.определим угловой коэффициент для искомых прямых. k1=2. k2=-0,5,должно выполняться условие перпендикулярности прямых: k1·k2=-1. Уравнение искомой прямой принимает вид: у=-0,5х+b. Определим значение для b. Так как данная прямая проходит через точку (0; 5). то по условию искомая прямая проходит через эту точку. Подставим координаты (0;5) в уравнение искомой прямой 5=-0,5·0+b, b=5. Уравнение первой искомой прямой будет у=-0,5х+5. Другая искомая прямая пройдет через точку (-2,5;0), снова подставим эти координаты в уравнение у=-0,5х+b. 0=-0,5·(-2,5)+b, b =-1,25. Другое искомое уравнение будет у=-0,5х-1,25. ответ: у=-0,5х+b; у=-0,5х-1,25.
у=2х+5.определим угловой коэффициент для искомых прямых.
k1=2.
k2=-0,5,должно выполняться условие перпендикулярности прямых: k1·k2=-1.
Уравнение искомой прямой принимает вид:
у=-0,5х+b.
Определим значение для b.
Так как данная прямая проходит через точку (0; 5). то по условию искомая прямая проходит через эту точку. Подставим координаты (0;5) в уравнение искомой прямой
5=-0,5·0+b, b=5.
Уравнение первой искомой прямой будет у=-0,5х+5.
Другая искомая прямая пройдет через точку (-2,5;0), снова подставим эти координаты в уравнение у=-0,5х+b.
0=-0,5·(-2,5)+b,
b =-1,25.
Другое искомое уравнение будет у=-0,5х-1,25.
ответ: у=-0,5х+b;
у=-0,5х-1,25.