Найти площадь поверхности правильной четырехугольной пирамиды ,стороны основания которой равны 6 и высота 4

2003lyuba 2003lyuba    1   13.07.2019 01:40    0

Ответы
Пусть SABCD - правильная 4-х угольная пирамида.О- точка пересечения диагоналей основания. Тогда SO-высота пирамиды.Sпов.=Sосн.+Sбок.Sосн.=а²=6²=36(ед.кв.)Sбок.=½рl, где р - периметр основания, l-апофема(высота боковой грани).Росн.=4а= 4·6=24 ед. -поскольку в основании квадрат.Найдем апофему пирамиды, для этого проведем высоту боковой грани SAB, которая является равнобедренным треугольником. Получим SМ, т.М - середина стороны АВ основания пирамиды, т.к. для треугольника SAB SМ есть высотой, бисектрисой и медианой.Кроме того по т. о 3-х перпендикулярах ОМ - проекция SМ на основание и ОМ тоже перпендикулярен АВ. Таким образом ОМ - радиус окружности вписаной в основание пирамиды. Для квадрата R=½а=½·6=3.Из треугольника SОМ(угол О - прямой) по т.Пифагора SМ²=ОМ²+SО², SМ²=3²+4²=9+16=25,SМ=5.Sбок.=½·24·5=60(ед.кв.)Sпов.=60+36=96(ед.кв.) 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика