Найти общее решение (общий интеграл) дифференциального уравнения первого порядка, надо подробное решение))


Найти общее решение (общий интеграл) дифференциального уравнения первого порядка, надо подробное реш

АлександрЧерепов АлександрЧерепов    1   13.02.2022 21:35    0

Ответы
Высплюсенье Высплюсенье  13.02.2022 22:00

(Метод Лагранжа).

y'+y=\cos{x};y'+y=0; \frac{dy}{dx} =-y; \frac{dy}{y}=-dx; \int{\frac{dy}{y} }=-\int{dx}; \ln|y|=-x+C;ln|y|=\ln{e^{-x}}+\ln{C}; \ln{y}=\ln{Ce^{-x}}; y=Ce^{-x}

Произвольную постоянную примем за функцию от x.

y=C(x)e^{-x}; y'=C'(x)e^{-x}-C(x)e^{-x}.

Подставим y и y' в исходное уравнение:

C'(x)e^{-x}-C(x)e^{-x}+C(x)e^{-x}=\cos{x}; C'(x)e^{-x}=\cos{x}; \frac{d(C(x))}{dx}=\frac{\cos{x}}{e^{-x}}d(C(x))=\frac{\cos{x}dx}{e^{-x}}; \int{d(C(x))=\int{\frac{\cos{x}dx}{e^{-x}}}; C(x)=\int{\frac{\cos{x}dx}{e^{-x}}};

Отдельно найдем полученный неопределенный интеграл:

\int\frac{\cos{x}dx}{e^{-x}}=\int{e^x\cos{x}}dx;int{e^x\cos{x}}dx=\left[u=e^x; du=e^xdx\atop dv=\cos{x}dx;v=\sin{x}\right]=e^x\sin{x}-\int{e^x\sin{x}dx.}int{e^x\sin{x}dx=\left[u=e^x; du=e^xdx\atop dv=\sin{x}dx;v=-\cos{x}\right]=-e^x\cos{x}+\int{e^x\cos{x}}dx.

Отсюда получаем что:

\int{e^x\cos{x}}dx=e^x\sin{x}-(-e^x\cos{x}+\int{e^x\cos{x}dx});2\int{e^x\cos{x}}dx=e^x\sin{x}+e^x\cos{x}int{e^x\cos{x}}dx=\frac{e^x}{2}(\sin{x}+\cos{x})+C_2

Отсюда получаем что:

C(x)=\frac{e^x}{2}(\sin{x}+\cos{x})+C_2

Теперь подставим в формулу y=C(x)e^{-x}:

y=\frac{1}{e^x}\Big(\frac{e^x}{2}(\sin{x}+\cos{x})+C_2 \Big) =\frac{1}{2}(\sin{x}+\cos{x}) +e^{-x}C_2

В итоге окончательно получаем:

\boxed{y=\frac{1}{2}(\sin{x}+\cos{x})+Ce^{-x}}

(Метод Бернулли)

y'+y=\cos{x}

Пусть y=uv; y'=u'v+uv' тогда:

u'v+uv'+uv=\cos{x}; u'v+u(v'+v)=\cos{x} потребуем, чтобы v'+v=0 тогда:

\frac{dv}{dx}+u=0;\frac{dv}{v}=-dx; \int{\frac{dv}{v} }=-\int{dx};\ln{v}=-x \Rightarrow v=e^{-x}

Подставим найденное значение v в u'v+u(v'+v)=\cos{x}:

u'e^{-x}+u(e^{-x}-e^{-x})=\cos{x};u'=\frac{\cos{x}}{e^-x} \Rightarrow u=\int{e^x\cos{x}}dx

В предыдущем данный интеграл был найден методом интегрирования по частям, поэтому не будет здесь его искать а просто подставим уже найденный.

u=\frac{e^x}{2}(\sin{x}+\cos{x})+C но y=uv тогда:

y=e^{-x}(\frac{e^x}{2}(\sin{x}+\cos{x})+C )=\frac{1}{2}(\sin{x}+\cos{x})+Ce^{-x} Отсюда получаем:

\boxed{y=\frac{1}{2}(\sin{x}+\cos{x})+Ce^{-x} }

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика