* * * * * * * * * * ** * * * * * * * * * *
Найти ∫ dx / (3sinx+4cosx)
ответ: ( Ln | C(2tg(x/2)+1 ) /( tg(x/2) - 2 ) | ) / 5
Пошаговое объяснение:
sinx = 2t /(1+t²)
cosx = (1 - t²)/(1+t²)
dx = (2dt) / (1+t²).
∫ (2dt) /(1+t²) / ( 6t / (1+t²) +4(1-t²) / (1+t²) ) =
= ∫ (dt) / ( 3t +2(1-t²) ) = - ∫ (dt) / ( 2t² - 3t -2 ) = - ∫ (dt) / ( t-2)(2t +1 )=
(1/5) *∫( 2/(2t+1) - 1/(t - 2) ) dt =(1/5)*[ ∫( (2dt) / (2t +1) - ∫(dt ) /( t-2) ] =
(1/5)* ( Ln|2t+1| - Ln|t-2| +Ln|C| )= (1/5)*Ln |C(2t+1) / (t-2) | =
( Ln | C(2tg(x/2)+1 ) /( tg(x/2) - 2 ) | ) / 5 .
Универсальная замена : t = tg(x/2) ⇒
dt =(1 / cos²(x/2) ) *(1/2) dx =( 1+tg²(x/2) )*(1/2)*dx dx = (2dt) / (1+t²)
sinx = 2sin(x/2)*cos(x/2) = 2sin(x/2)*cos(x/2) / ( sin²(x/2) + cos²(x/2) ) = 2tg(x/2) / ( 1+tg²(x/2 ) = 2t /(1+t²)
cosx = (cos²(x/2) -sin²(x/2) )/( cos²(x/2) +sin²(x/2) ) =(1-tg²(x/2) )/(1+tg²(x/2)) = (1 - t²)/(1+t²) .
* * * * * * * * * * ** * * * * * * * * * *
Найти ∫ dx / (3sinx+4cosx)
ответ: ( Ln | C(2tg(x/2)+1 ) /( tg(x/2) - 2 ) | ) / 5
Пошаговое объяснение:
sinx = 2t /(1+t²)
cosx = (1 - t²)/(1+t²)
dx = (2dt) / (1+t²).
∫ (2dt) /(1+t²) / ( 6t / (1+t²) +4(1-t²) / (1+t²) ) =
= ∫ (dt) / ( 3t +2(1-t²) ) = - ∫ (dt) / ( 2t² - 3t -2 ) = - ∫ (dt) / ( t-2)(2t +1 )=
(1/5) *∫( 2/(2t+1) - 1/(t - 2) ) dt =(1/5)*[ ∫( (2dt) / (2t +1) - ∫(dt ) /( t-2) ] =
(1/5)* ( Ln|2t+1| - Ln|t-2| +Ln|C| )= (1/5)*Ln |C(2t+1) / (t-2) | =
( Ln | C(2tg(x/2)+1 ) /( tg(x/2) - 2 ) | ) / 5 .
Универсальная замена : t = tg(x/2) ⇒
dt =(1 / cos²(x/2) ) *(1/2) dx =( 1+tg²(x/2) )*(1/2)*dx dx = (2dt) / (1+t²)
sinx = 2sin(x/2)*cos(x/2) = 2sin(x/2)*cos(x/2) / ( sin²(x/2) + cos²(x/2) ) = 2tg(x/2) / ( 1+tg²(x/2 ) = 2t /(1+t²)
cosx = (cos²(x/2) -sin²(x/2) )/( cos²(x/2) +sin²(x/2) ) =(1-tg²(x/2) )/(1+tg²(x/2)) = (1 - t²)/(1+t²) .