найдите все положительные значения параметра а, при каждом из которых уравнение |1-5√x|=3(x+a) имеет ровно два корня.

annareain252 annareain252    3   27.09.2019 16:40    1

Ответы
LIONVIP LIONVIP  08.10.2020 23:01

1) рассмотрим случай

1-5*sqrt(x)>=0 или x E [0,1/25]

Замена sqrt(x)=t>=0

3t^2+5t+3a-1=0

D=25-12(3a-1)=37-36a

t=(-5+sqrt(37-36a))/6

Второй корень не подходит по условию t>=0

откуда a E (0,1/3] учитывая a>0

То есть один корень на интервале (0,1/3]

2) отрицательная подмодульная часть

1-5*sqrt(x)=-3x-3a  

3t^2-5t+3a+1=0

D=25-12(3a+1) = 13-36a

t=(5+/-sqrt(13-36a))/2  

{ (5+sqrt(13-36a))/2>0

{ (5+sqrt(13-36a))/2>0  

Откуда a E (0,13,36) учитывая a>0   

3) значит чтобы уравнение имело два корня, нужно чтобы первый случай не существовал, то есть надо рассмотреть случай a>1/3 тогда второй будет иметь два корня, то есть в промежутке  

a E (1/3, 13/36) уравнение имеет два корня.

ПОКАЗАТЬ ОТВЕТЫ
ДимаПохитун ДимаПохитун  08.10.2020 23:01

...................................................


найдите все положительные значения параметра а, при каждом из которых уравнение |1-5√x|=3(x+a) имеет
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика