Найдите все натуральные k для которых число k^7+k^6+k^5+1 имеет ровно три натуральных делителя

TittansMass TittansMass    3   03.10.2019 00:20    0

Ответы
kurbedinovazar kurbedinovazar  09.10.2020 12:49

1

Пошаговое объяснение:

Любое натуральное число М, большее 1, имеет минимум 2 натуральных делителя: 1 и М. Пусть какое-то число М имеет простой делитель p≠М. Тогда М делится и на M/p. Получили 4 делителя числа. Значит для выполнения условий задания два из них должны совпадать(и это не 1 и не М), то есть М/p=p → p²=M → М - квадрат простого числа.

Значит M=k⁷+k⁶+k⁵+1 имеет три натуральных делителя: 1, √М и М.

Дальнейшие вычисления даны в приложении:


Найдите все натуральные k для которых число k^7+k^6+k^5+1 имеет ровно три натуральных делителя
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика