Решение Находим первую производную функции: y' = -( - x + 13)e^(- x + 13) - e^(- x + 13) или y' = (x -14)e^(- x + 13) Приравниваем ее к нулю: (x - 14) e^(- x + 13) = 0 e^(- x + 13) ≠ 0 x - 14 = 0 x = 14 Вычисляем значения функции f(14) = 1/e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13) или y'' = (- x+15)e^(- x + 13) Вычисляем: y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.
Находим первую производную функции:
y' = -( - x + 13)e^(- x + 13) - e^(- x + 13)
или
y' = (x -14)e^(- x + 13)
Приравниваем ее к нулю:
(x - 14) e^(- x + 13) = 0
e^(- x + 13) ≠ 0
x - 14 = 0
x = 14
Вычисляем значения функции
f(14) = 1/e
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13)
или
y'' = (- x+15)e^(- x + 13)
Вычисляем:
y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e
y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.