Найдите производную y=4cosx/2 y=x-cos(2x-pi/3)

G89 G89    1   03.09.2019 09:30    6

Ответы
kamuxa kamuxa  06.10.2020 14:23
Y' = (4 cos (x/2))' = 4 * (-sin(x/2)) * (1/2) = - 2 sin(x/2)
y' = (x - cos(2x - pi/3))' = 1 - (-sin(2x - pi/3) * 2) = 1 + 2 sin(2x - pi/3)

Использовалась формула производной сложной функции
f(g(x))' = f'(g(x)) * g'(x)
Также производная суммы (или разности) равна сумме (разности) производных.

Например, во втором случае имеем разность и сложную функцию. Поэтому отдельно берём производную от икса (x)' = 1 и от косинуса, которая уже сложная функция, т.к. под синусом находится другая функция, а именно g(x) = 2x - pi/3.
f(g(x)) = cos(2x - pi/3)
Производная g(x) понятна g'(x) = 2, т.к. pi/3 - это константа, производная которой равна нулю, а производная показательной функции по формуле (x^n)' = n * x^(n-1)
Производная от косинуса берёт без учёта аргумента, он просто переписывается. А производная от косинуса это минус синус. Вот и получилось (-sin(2x- pi/3).
Перемножив производные от синуса и показательной функций, получаем результат.
ПОКАЗАТЬ ОТВЕТЫ
LIZA31012006 LIZA31012006  06.10.2020 14:23
Y`=(4cosx/2)`*(x/2)`=-4sinx/2 *1/2=-2sin(x/2)

y`=(x)`-(cos(2x-π/3))`*(2x-π/3)`=1+sin(2x-π/3) *2=1+2sin(2x-π/3)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика