Годятся все числа такого вида : р- простое число от 1 до 78, и м=р-1, а н=1. Действительно (р-1)*1+1 делится на р-1+1. Остается проверить есть ли еще такие числа. Пусть м+н=р Тогда (р-м)*м +1= к*р или м- (м*м-1)/р=к -целое. Т.е. (м-1)(м+1) должно делиться на простое число превосходящее м. Это может быть только если м+1 или м-1 делятся на простое число, превосходящее м. Но такие пары мы уже рассмотрели.Седь это значит, что м+1 простое и н=1. Итак все пары это простые числа от 1 до 78 из которых вычтена 1 и 1. Напимер (1, 1), (2,1),(4,1),(6,1),(10,1),(12,1) и т.д. Открыв таблицу простых чисел убеждаемся, что таких пар 22
Действительно (р-1)*1+1 делится на р-1+1.
Остается проверить есть ли еще такие числа.
Пусть м+н=р
Тогда (р-м)*м +1= к*р
или м- (м*м-1)/р=к -целое.
Т.е. (м-1)(м+1) должно делиться на простое число превосходящее м.
Это может быть только если м+1 или м-1 делятся на простое число, превосходящее м. Но такие пары мы уже рассмотрели.Седь это значит, что м+1 простое и н=1.
Итак все пары это простые числа от 1 до 78 из которых вычтена 1 и 1.
Напимер (1, 1), (2,1),(4,1),(6,1),(10,1),(12,1) и т.д.
Открыв таблицу простых чисел убеждаемся, что таких пар 22