Найдите количество пар натуральных чисел (m; n) не превосходящих 78, таких, что m+n простое число, а (mn+1)\(m+n) — целое число.

mendozzzakortd mendozzzakortd    2   04.07.2019 00:20    0

Ответы
Milania0011 Milania0011  02.10.2020 19:37
Годятся все числа такого вида :  р- простое число от 1 до 78, и м=р-1, а н=1.
Действительно (р-1)*1+1 делится на р-1+1.
Остается проверить есть ли еще такие числа.
Пусть м+н=р
Тогда (р-м)*м +1= к*р
или  м- (м*м-1)/р=к  -целое.
Т.е.  (м-1)(м+1) должно делиться на простое число превосходящее м.
Это может быть только если м+1 или м-1 делятся на простое число, превосходящее м. Но такие пары мы уже рассмотрели.Седь это значит, что м+1 простое и н=1.
Итак все пары это простые числа от 1 до 78 из которых вычтена 1 и 1.
Напимер (1, 1), (2,1),(4,1),(6,1),(10,1),(12,1) и т.д.
Открыв таблицу простых чисел убеждаемся, что таких пар 22
ПОКАЗАТЬ ОТВЕТЫ