Найдите количество чисел из промежутка [10; 30], каждое из которых является дискриминантом некоторого квадратного уравнения с целыми коэффициентами.

Husky333 Husky333    3   15.09.2019 09:30    0

Ответы
alyavladimirov1 alyavladimirov1  04.08.2020 08:47
D=b²-4ac. Любое число, делящееся на 4, можно представить в таком виде. В самом деле, пусть D=4k; возьмем b=0; a=1; c=-k.
Если b делится на 2,  D делится на 4, поэтому новые значения D мы не получим.
Если b не делится на 2, b=2n+1, то D=4n²+4n+1-4ac, то есть D в этом случае дает остаток 1 при делении на 4. С другой стороны, любое число, дающее остаток 1 при делении на 4, можно получить в таком виде. В самом деле, если D=4k+1, то можно взять b=1; a=1; c=-k.

Вывод: число является дискриминантом некоторого квадратного уравнения с целыми коэффициентами с целыми коэффициентами тогда и только тогда, когда это число делится на 4 или дает остаток 1 при делении на 4. В промежутке [10;30] таких чисел ровно 10.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика