Найдите число корней уравнения 3sin3x+sin9x=cos4x-cos10x на промежутке [0;2pi].

Stanislava153 Stanislava153    1   16.08.2020 03:40    1

Ответы
Kovalenko2001N Kovalenko2001N  15.10.2020 15:57

3sin3x + sin9x = cos4x-cos10x\\3sin3x + 3sin3x - 4sin^33x = -2sin7x*sin(-3x)\\6sin3x - 4sin^33x = 2sin3x*sin7x\\4sin^33x + 2sin3x(sin7x-3) = 0\\2sin^33x + sin3x(sin7x-3) = 0\\sin3x*(2sin^23x + sin7x - 3) = 0\\sin3x*(1-cos6x + sin7x-3) = 0\\sin3x*(sin7x - cos6x - 2) = 0\\

Проанализировав полученное уравнение, понимаем, что нулю оно равняется в двух случаях: когда первый множитель равен нулю или когда второй множитель равен нулю.

С первым все понятно: sin3x = 0 = 3x = \pi n, n \in Z = x = \frac{\pi}{3} n, n \in Z

Теперь рассмотрим второй множитель: sin7x - cos6x - 2 = 0 = sin7x - cos6x = 2

Так как функции sin и cos - это ограниченные функции, а именно не превышающие по модулю единицу, то такое равенство возможно тогда и только тогда, когда одновременно sin7x = 1, а cos6x = -1. Решим эти простые уравнения и найдем пересечение корней:

sin7x = 1 = 7x = \frac{\pi}{2} + 2\pi k, k \in Z = x = \frac{\pi}{14} + \frac{2\pi}{7} k, k \in Z

cos6x = -1 = 6x = \pi + 2\pi m, m \in Z = x = \frac{\pi}{6} + \frac{\pi}{3}m, m \in Z

Теперь приравняем полученные результаты:

\frac{\pi}{14} + \frac{2\pi}{7} k = \frac{\pi}{6} + \frac{\pi}{3}m |*\frac{42}{\pi}\\ 3 + 12k = 7 + 14m\\12k - 14m = 4\\6k - 7m = 2

Заметим, что пара чисел k = 5 и m = 4 является решением, а значит, являются решением все числа вида:

k = 5 + 7p\\m = 4 + 6p\\ p \in Z

Подставим это в любую серию корней и найдем пересечения (например, в первую):

x = \frac{\pi}{14} + \frac{2\pi}{7} k, k \in Z = x = x = \frac{\pi}{14} + \frac{2\pi}{7} (5+7p), p \in Z = x = \frac{\pi}{14} + \frac{10\pi}{7} + 2\pi p, p \in Z = x = \frac{3\pi}{2} + 2\pi p, p \in Z = x = -\frac{\pi}{2} + 2\pi p, p \in Z\\

На промежутке от [0; 2\pi] уравнение имеет 7 корней.

ответ: 7 корней

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика