Чтобы найти угол наклона касательной к кривой в заданной точке, нам потребуется найти производную функции, а затем подставить значение абсциссы точки в найденную производную.
1. Найдем производную функции y=1/12 x^3+5. Для этого воспользуемся правилом дифференцирования степенной функции: если y = x^n, то dy/dx = n*x^(n-1). В данном случае n=3.
2. Теперь найдем значение производной в точке, абсцисса которой равна 2. Для этого подставим x=2 в найденную производную:
dy/dx = 1/4 * (2)^2 = 1/4 * 4 = 1
3. Наклон касательной к кривой, направленной в точке (2, y), определяется значением производной в данной точке.
Таким образом, угол наклона касательной к кривой y=1/12 x^3+5 в точке, абсцисса которой равна 2, равен 1. Обычно угол наклона измеряется в радианах, так что ответ можно дополнить указанием, что угол наклона равен 1 радиану.
1. Найдем производную функции y=1/12 x^3+5. Для этого воспользуемся правилом дифференцирования степенной функции: если y = x^n, то dy/dx = n*x^(n-1). В данном случае n=3.
Дифференцируем функцию y=1/12 x^3+5:
dy/dx = 3 * (1/12) * x^(3-1) = 1/4 * x^2
2. Теперь найдем значение производной в точке, абсцисса которой равна 2. Для этого подставим x=2 в найденную производную:
dy/dx = 1/4 * (2)^2 = 1/4 * 4 = 1
3. Наклон касательной к кривой, направленной в точке (2, y), определяется значением производной в данной точке.
Таким образом, угол наклона касательной к кривой y=1/12 x^3+5 в точке, абсцисса которой равна 2, равен 1. Обычно угол наклона измеряется в радианах, так что ответ можно дополнить указанием, что угол наклона равен 1 радиану.