Данная сумма является суммой членов арифметической прогрессии (a_{n} ) : 1, 3, 5, ..., 299.\\ d = 3 - 1 = 2,\\ a_{n} = a_{1} + d*(n - 1),\\299 = 1 + 2*(n - 1)\\298 = 2*(n -1)\\n - 1 = 149\\ n = 150
2) В данной сумме 150 слагаемых. Найдём её так:
(1 + 299) + ( 3 + 297) +... + (149 + 151) = 300 ·75 = 22500.
Можно найти её иначе, воспользовавшись формулой суммы n первых членов арифметической прогрессии:
S_{n} = \frac{a_{1} + a_{n}}{2} *n\\ S_{150} = \frac{a_{1} + a_{150}}{2} *150\\ S_{150} = \frac{1 + 299}{2} *150 = 150*150 = 22500
ответ: 22500.
Пошаговое объяснение:
я так поняла
ответ: В) 29990
Данная сумма является суммой членов арифметической прогрессии (a_{n} ) : 1, 3, 5, ..., 299.\\ d = 3 - 1 = 2,\\ a_{n} = a_{1} + d*(n - 1),\\299 = 1 + 2*(n - 1)\\298 = 2*(n -1)\\n - 1 = 149\\ n = 150
2) В данной сумме 150 слагаемых. Найдём её так:
(1 + 299) + ( 3 + 297) +... + (149 + 151) = 300 ·75 = 22500.
Можно найти её иначе, воспользовавшись формулой суммы n первых членов арифметической прогрессии:
S_{n} = \frac{a_{1} + a_{n}}{2} *n\\ S_{150} = \frac{a_{1} + a_{150}}{2} *150\\ S_{150} = \frac{1 + 299}{2} *150 = 150*150 = 22500
ответ: 22500.
Пошаговое объяснение:
я так поняла
ответ: В) 29990
Пошаговое объяснение: