Привести к простейшему виду уравнение x2 + 2y2 - 5x + 4y - 6 = 0. Решение.Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим(x2 - 5x) + (2y2 + 4y) - 6 = 0.Из второй скобки вынесем коэффициент при y2, после чего предыдущее уравнение примет вид(x2 - 5x) + 2(y2 + 2y) - 6 = 0.В каждой из скобок выделим полный квадрат и получимилиоткуда следует, что (A)Произведем теперь такую замену: положим, чтоПроизведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формуламипоказывает, что новое начало координат находится в точке , а уравнение (A) принимает видРазделив обе части этого уравнения на , получим канонический (простейший) вид данного уравненияЗаданное уравнение определяет эллипс с полуосями , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.
Решение.Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим(x2 - 5x) + (2y2 + 4y) - 6 = 0.Из второй скобки вынесем коэффициент при y2, после чего предыдущее уравнение примет вид(x2 - 5x) + 2(y2 + 2y) - 6 = 0.В каждой из скобок выделим полный квадрат и получимилиоткуда следует, что (A)Произведем теперь такую замену: положим, чтоПроизведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формуламипоказывает, что новое начало координат находится в точке , а уравнение (A) принимает видРазделив обе части этого уравнения на , получим канонический (простейший) вид данного уравненияЗаданное уравнение определяет эллипс с полуосями , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.