На столе лежат 2018 монет. лиса алиса и кот по очереди берут со стола по несколько монет - одну, три или пять. выигрывает тот, кто возьмет последнюю монету. кто победит при правильной игре? (лиса начинает ходить)

tiser tiser    3   28.09.2019 19:40    0

Ответы
marianna123123 marianna123123  09.10.2020 01:12

Заметим что если бы монет было кратно 6 то выигрывает второй игрок Всегда Если первый ход 1 то второй 5, первый 3 второй 3, первый 5 второй 1

Но к сожалению 2018 не делится на 6, а целиком на 6 делится или 2016 или 2010

И нам надо рассмотьреть тактику как нам довести до числа кратному 6

Рассмотрим  2016. остается 2 монеты до кратного 6 числа - но пока непонятно как играть можно взять и 1 и 3 и 5 монет

Рассмотрим второе число 2010 остается 2018-2010=8 монет

И тут можно показать стратегию Если лиса берет 1 то Кот берет 1 и мы попадаем на 2016 оставшихся монет и побеждает Кот как второй

Если Лиса берет или 3 или 5 то Кот берет 5 и 3 соответственно и попадаем на 2010 оставшихся монет. И снова побеждает Кот как второй

ответ Побеждает всегда второй или Кот

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика