На первой коробке написано: «все коробки пустые» на второй«по крайней мере 2013 коробок пустые» на третьей«по крайней мере 2012 коробок пустые» на 2014-й«по крайней мере одна коробка пустая» известно, что надписи на пустых коробках ложны, а на коробках с конфетами -истинные. определите, сколько коробок с конфетами , , с олимпиадной
Утверждение: "хотя бы n коробок пустые" можно перефразировать как "максимум 2014-n коробок полные"
Тогда при k полных коробках можно определить истинность надписей на коробках.
1) 2014 коробок пустые - 0 коробок полные - не верно
2) хотя бы 2013 коробок пустые - максимум 1 полная - не верно
...
k) хотя бы 2015-k пустые - максимум k-1 полных - не верно
k+1) хотя бы 2014-k пустые - максимум k полных - верно
k+2) хотя бы 2013-k пустые - максимум k+1 полных - верно
...
2014) хотя бы 1 пустая - максимум 2013 полных - верно
Видно, что пункты с 1 по k-й не верны, а пункты с k+1 по 2014 верные. Количество верных пунктов: 2014 - (k+1) + 1 = 2014-k. Оно равно, как мы условились, количеству полных коробок. То есть 2014-k=k. Отсюда k=1007.