На область сходимости ряда: сумма от n=1 до ∞ () , !

НикВероник1 НикВероник1    1   27.06.2019 00:10    0

Ответы
misha0problemy misha0problemy  02.10.2020 12:33
В знаменателе дроби стоит n2?Если да, то надо извлечь корень n-й степени из модуля n-го коэффициента (это общая процедура). Далее надо найти верхний предел того, что получится, при n→∞. В данном случае это будет 1, так как limn→∞n√n=1, и то же верно для квадрата этой величины, и для ей обратной.Найденное значение равно R−1, где R -- радиус сходимости ряда (это формула Коши - Адамара). В этом примере R=1, то есть ряд сходится при |x|<1 и расходится при |x|>1. Случаи |x|=1надо исследовать отдельно -- разные ряды при этом могут себя вести по-разному. В данном случае ряд сходится при x=1 (по интегральному признаку). Тогда он сходится и при x=−1, так как сходится ряд из абсолютных величин область сходимости будет отрезок x∈[−1,1].
ПОКАЗАТЬ ОТВЕТЫ
HelpFox HelpFox  02.10.2020 12:33
Признак Коши ничегошеньки здесь не даст.
Применять таковой полезно лишь тогда, когда в записи n-го члена присутствует n-я степень (возможно с коэффициентом)
На область сходимости ряда: сумма от n=1 до ∞ () , !
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика