На катете ас треугольника авс (угол с=90 градусов) как на диаметре построена окружность, пересекающая гипотенузу ав в точке d; bd=4 см, ad=9 см. найдите cd.

bogdOJ bogdOJ    1   30.07.2019 02:20    0

Ответы
Ответит7275 Ответит7275  27.09.2020 17:35
По условию точка Д принадлежит окружности, АС ее диаметр, следовательно АДС как вписанный угол равен 90 гр., поскольку опирается на диаметр (по свойству вписанного угла). Т.о. получаем два прямоугольных треугольника АСД и ВСД. АД и ДБ катеты этих треугольников и равны соответственно 9 и 4, другой катет у них общий (СД).
Обозначим катеты треугольника АВС как: АС=b, ВС=а, а гипотенуза равна по условию АВ=АД+ДВ=13.
Составим систему уравнений, опираясь на теорему Пифагора:
b^2+a^2=169
b^2-81=a^2-16 (Это равенство получается из того, что левая и правые части равны CД^2)
 b^2=117 
Найдем СД.
СД^2=b^2-81=117-81=36  =>  СД=6
 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика