На доске написано 10 натуральных различных чисел. среднее арифметическое шести меньших из них равно 6,среднее арифметическое шести больших из них равно 13. а) может ли наименьшее из чисел быть 4 б)может ли среднее арифметическое всех десяти чисел быть 10,2 в) найдите максимальное среднее арифметическое ,объясните(решите) подробно

Sharkade Sharkade    1   26.09.2019 15:01    6

Ответы
twistella twistella  08.10.2020 20:26
Обозначим числа по возрастанию
a1 < a2 < a3 < a4 < a5 < a6 < a7 < a8 < a9 < a10
Нам известно, что:
(a1+a2+a3+a4+a5+a6)/6 = 6
(a5+a6+a7+a8+a9+a10)/6 = 13
Получаем
a1+a2+a3+a4+a5+a6 = 36
a5+a6+a7+a8+a9+a10 = 78
а) Пусть наименьшее число a1 = 4, тогда остальные должны быть больше:
a2=5, a3=6, a4=7, a5=8, a6=9
Их среднее арифметическое: (4+5+6+7+8+9)/6 = 6,5 > 6
ответ: нет, наименьшее число меньше 4. Например, (3+4+5+7+8+9)/6 = 6
б) Складываем оба уравнения
a1+a2+a3+a4+a5+a6+a5+a6+a7+a8+a9+a10 = 36+78 = 114
(a1+a2+ ... +a10) + (a5+a6) = 114
 Пусть среднее арифметическое всех 10 чисел равно 10,2. Тогда
a1+a2+ ... +a10 = 10,2*10 = 102
a5 + a6 = 114 - 102 = 12 = 1+11 = 2+10 = 3+9 = 4+8 = 5+7 = 6+6
Очевидно, не может быть a5 < 5, иначе будет a1 <= 0, а все числа натуральные.
Но и a5 = 6 не может быть, потому что тогда a6 тоже = 6, а все числа различны.
Значит, a5=5, a6=7. Тогда a1=1, a2=2, a3=3, a4=4, a5=5, a6=7, их среднее
(1+2+3+4+5+7)/6 = 22/6 = 11/3 < 4
ответ: нет, не может.
в) Чтобы среднее арифметическое всех 10 чисел было максимальным,
и при этом соблюдались наши условия:
(a1+a2+a3+a4+a5+a6)/6 = 6
(a5+a6+a7+a8+a9+a10)/6 = 13
(a1+a2+ ... +a10) + (a5+a6) = 114
нужно взять максимальное a1. Как мы выяснили в п. а), максимальное a1 = 3.
Получаются числа: 3, 4, 5, 7, 8, 9, 12, 14, 17, 18.
Средние 6 чисел: (3+4+5+7+8+9)/6 = 6, (8+9+12+14+17+18)/6 = 13
Максимальное среднее 10 чисел: (3+4+5+7+8+9+12+14+17+18)/10 = 97/10 = 9,7
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика