b^n - 1 = (b - 1)(b^(n-1)+b*(n-2)++b^2 + b + 1)
b^17 - 1 = (b - 1)(b^16 + b^15 + + b^2+b+1)
(b^17 - 1)(b + 1)/(b^16 + b^15 + + b^2+b+1) = (b - 1)(b + 1) = b^2 - 1
b = -3
9 - 1 = 8
16 равно когда (b^17 - 1)(b - 1)/(b^16 + b^15 + + b^2+b+1) = (b - 1)(b - 1) = (b - 1)^2 ( (-3 - 1)^2 = 16)
b^n - 1 = (b - 1)(b^(n-1)+b*(n-2)++b^2 + b + 1)
b^17 - 1 = (b - 1)(b^16 + b^15 + + b^2+b+1)
(b^17 - 1)(b + 1)/(b^16 + b^15 + + b^2+b+1) = (b - 1)(b + 1) = b^2 - 1
b = -3
9 - 1 = 8
16 равно когда (b^17 - 1)(b - 1)/(b^16 + b^15 + + b^2+b+1) = (b - 1)(b - 1) = (b - 1)^2 ( (-3 - 1)^2 = 16)