Кузнечик прыгает по прямой каждый раз в одном из двух направлений, причем в первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее. Докажите, что после 1985 прыжков он не может оказаться там, где начинал !

красотка356 красотка356    1   25.09.2021 19:34    7

Ответы
pohta000000 pohta000000  25.09.2021 19:40

Пошаговое объяснение:

Каждый ход кузнечик прыгает на чётное или нечётное количество см поочередно. Начинает он свой путь с прыжка нечётной длины. Значит, за 1985 прыжков он совершит 992 прыжка чётной длины и 993 прыжка нечётной длины. Значит, общая длина всех прыжков нечётна. А что бы кузнечику после некоторого количества прыжков вернуться в одну точку, значит, он должен попрыгать 2 одинаковых расстояния (он прыгает или в одну, или в другую сторону, и суммарно он должен пропрыгать одинаковое расстояние в обе стороны). Каждый ход кузнечик совершает прыжок, равный целому количеству см. А так как общее преодолённое кузнечиком расстояние нечётно он не сможет вернуться в исходную точку, прыгая согласно условию, т.к. нечётное число не разделится на 2 так, что бы получилось целое число. Надеюсь, понятно доказано.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика