1. Пусть при делении многочлена P(x) на двучлен Q(x) в результате получаем двучлен R(x) = px + q. Тогда:
P(x) = -4x^2 + ax + 5;
Q(x) = 4x + 5;
Q(x) * R(x) = P(x);
(4x + 5)(px + q) = -4x^2 + ax + 5;
4px^2 + 4qx + 5px + 5q = -4x^2 + ax + 5;
4px^2 + (4q + 5p) + 5q = -4x^2 + ax + 5.
2. Многочлены в обеих частях равенства будут тождественно равны при равенстве соответствующих коэффициентов:
{4p = -4;
{4q + 5p = a;
{5q = 5;
{p = -1;
{a = 4q + 5p;
{q = 1;
{a = 4 * 1 + 5 * (-1);
{a = -1.
ответ: a = -1.
1. Пусть при делении многочлена P(x) на двучлен Q(x) в результате получаем двучлен R(x) = px + q. Тогда:
P(x) = -4x^2 + ax + 5;
Q(x) = 4x + 5;
Q(x) * R(x) = P(x);
(4x + 5)(px + q) = -4x^2 + ax + 5;
4px^2 + 4qx + 5px + 5q = -4x^2 + ax + 5;
4px^2 + (4q + 5p) + 5q = -4x^2 + ax + 5.
2. Многочлены в обеих частях равенства будут тождественно равны при равенстве соответствующих коэффициентов:
{4p = -4;
{4q + 5p = a;
{5q = 5;
{p = -1;
{a = 4q + 5p;
{q = 1;
{p = -1;
{q = 1;
{a = 4 * 1 + 5 * (-1);
{p = -1;
{q = 1;
{a = -1.
ответ: a = -1.