Пошаговое объяснение:
Рисунок к задаче в приложении.
Решение начинаем с построения координатной плоскости.
1) D(f)=[-3;3] - вертикальные линии.
2) E(f) = [-3;4] - горизонтальные линии.
Из этого следует, что максимальное значение на графике = +4, а минимальное = -3.
4) A(-1;0) и В(2;0) - нули функции - две точки на оси ОХ.
3) Производная отрицательная - функция убывает на участках от -3 до 0.
Производная возрастает при Х=0 и это минимум функции и он задан У(х) = - 3.
Производная равна 0 при х=2 и это максимум функции и он совпадает с нулем Х=2.
Точки перегиба находятся в точках экстремумов первой производной. (Вторая производная равна 0). Это получаются точки Х = 1 и Х=2.
Начинаем соединять плавной линией - как на рисунке.
Задание выполнено.
Пошаговое объяснение:
Рисунок к задаче в приложении.
Решение начинаем с построения координатной плоскости.
1) D(f)=[-3;3] - вертикальные линии.
2) E(f) = [-3;4] - горизонтальные линии.
Из этого следует, что максимальное значение на графике = +4, а минимальное = -3.
4) A(-1;0) и В(2;0) - нули функции - две точки на оси ОХ.
3) Производная отрицательная - функция убывает на участках от -3 до 0.
Производная возрастает при Х=0 и это минимум функции и он задан У(х) = - 3.
Производная равна 0 при х=2 и это максимум функции и он совпадает с нулем Х=2.
Точки перегиба находятся в точках экстремумов первой производной. (Вторая производная равна 0). Это получаются точки Х = 1 и Х=2.
Начинаем соединять плавной линией - как на рисунке.
Задание выполнено.