Из точки М к окружности с центром О проведены секущая МВ длинной 12 и касательная МТ, длинна которой составляет 2/3 длинны отрезка ВА. Найдите длину МТ понятное решение)


Из точки М к окружности с центром О проведены секущая МВ длинной 12 и касательная МТ, длинна которой

Ryuuko Ryuuko    2   09.07.2021 21:50    0

Ответы
mashamelnik28 mashamelnik28  08.08.2021 22:10

Для касательной и секущей к окружности, проведённых из одной точки, квадрат расстояния от этой точки до точки касания равен произведению длины секущей на длину её внешней части.

МТ²=МВ*МА или МТ²=12*(12-ВА).

По условию МТ=2/3*ВА. Пусть для простоты ВА=х .Тогда получим

(2/3*х)²=144-12х ,4/9*х²+12х-144=0 или

4х²+108х-1296=0 , D= 180², x₁=-85,5 не подходит по смыслу задачи, x₂=9 ⇒ ВА=9

МТ=√(12*3)=6 (ед).

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика