Два экскаватора разной мощности, работая вместе, вырыли котлован за 6 ч. если бы один из них вырыл половину всего котлована, а второй остальную часть, то вся работа была бы окончена за 12,5 ч. за сколько часов каждый экскаватор мог бы выполнить всю работу отдельно?
1/х+1/у=1/6
(1/2÷х)+(1/2÷у)=1/12,5
Находим х во втором уравнении:
(1/2÷х)+(1/2÷у)=1/12,5
х/2+у/2=12,5
х+у=25
х=25-у
Подставляем значение х в первое уравнение:
1/(25-у)+1/у=1/6
6(25у-у)+у=у(25-у)
150-6у+6у=25у-у²
у²-25у+150=0
D=25 ; уравнение имеет два действительных корня.
у1=10 часов нужно одному экскаватору, чтобы выполнить всю работу.
у2=15 часов нужно другому экскаватору чтобы выполнить всю работу.
ответ: за 10 часов одному и за 15 часов другому экскаватору.