Докажите, что на клетчатой бумаге треугольник с вершинами в узлах сетки не может иметь площадь, которая в единицах измерения площади, равных площади одной клетки, записывается в виде несократимой дроби со знаменателем 4.

star5647 star5647    3   04.07.2019 17:30    0

Ответы
Tinusya Tinusya  28.07.2020 10:28
вот решение. Пусть есть такой треугольник. Тогда можно вокруг него дорисовать прямоугольник так. (Сетку дорисуйте сами так, чтобы вешины треуг. были в точках пересечения линий клеток. Нарисуйте на клетчатой бумаге)
 Площадь клетки есть 1(единица).
Тогда площадь нашего треугольника будет "площадь прямоугольника минус площади дополнительных треугольников". Площадь прямоугольника - натуральное число.
 Площадь любого доп. треугольника будет "основание * высоту /2"
И если либо основание, либо высота - четное, тогда площадь - натуральное. Если нечетное- тогда в знаменателе 2.
А сумма, разность натуральных с дробными со знаменателем 2 дает дробное со знаменателем 2, а никак не 4. Вот и все.


Докажите, что на клетчатой бумаге треугольник с вершинами в узлах сетки не может иметь площадь, кото
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика