Даны координаты вершин пирамиды abcd: a(2; 3; 1); b(4; 1; -2); c(6; 3; 7); d(-5; -4; 8). вычислите её объём и высоту опущенную на грань abc.

Kagane Kagane    1   05.10.2019 13:40    1

Ответы
cook16 cook16  09.10.2020 21:44

Объём пирамиды равен (1/6) смешанного произведения векторов (АВ х АС) х АД.

Находим координаты векторов.

АВ = (2; -2; -3), АС = (4; 0; 6), АД = (-7; -7; 10).

Произведение векторов a = АВ = (2; -2; -3), b = АС = (4; 0; 6) равно     a × b = {aybz - azby; azbx - axbz; axby - aybx}.

Подставив координаты векторов, получаем (АВ х АС) = (-12; -24; 8)

Теперь находим произведение  (АВ х АС) х АД.

(АВ х АС) х АД =  (-12*(-7) + (-24)*(-7) + 8*10) = (84 + 168 + 80) =

                         = 84 + 168 + 56 = 308 .

Объём равен (1/6)*308 = 154/3 ≈ 51,333 куб.ед.


     

ПОКАЗАТЬ ОТВЕТЫ