Дано координаты вершин треугольника abc a(-6; 6) ; b(18; -1) ; c(0; 23) вычислить: 1) координаты векторов ba ; bc ; ac 2) велечины внутренних углов треугольника 3) длину сторон треугольника 4) координаты точек d ; l ; t - середин сторон
треугольника 5) координаты точек n и k которые делять большую сторону треугольника на 3 равные части 6) координаты точки m - точки пересечения медиан треугольника

Кеккуккекукек Кеккуккекукек    3   07.03.2019 19:20    6

Ответы
markasolnce2103 markasolnce2103  24.05.2020 03:53

1. Вектор ВА=((-6)-18;6-(-1))=(-24;7); ВС=(0-18;23-(-1))=(-18;24); AC=(0-(-6);23-6)=(6;17); Если начало координат переместить в начало вектора, то координаты конца и будут координатами вектора.

3. IBAI = корень((-24)^2+7^2)=25;IBCI = корень((-18)^2+24^2)=30;IACI = корень(6^2+17^2)=5*корень(13);

(почти точно 18:), ну в самом деле, 18^2=324, АС^2 =325... к сожалению, треугольник не прямоугольный. Прямоугольным был бы треугольник со сторонами 18,24,30)

2.очевидное замечание АВ = -ВА, скобками обозначено скалярное произведение АВ и АС;

cosA=(AB,AC)/(IABI*IACI)==(24*6+(-7)*17)/(25*5*корень(13))=1/(5*корень(13));

между прочим sinA = 18/(5*корень(13));

cosB=(ВА,BC)/(IBAI*IBCI)=((-24)*(-18)+7*24)/(25*30)=4/5; sinB=3/5

cosC=(CА,CB)/(ICAI*IBCI)=((-6)*18+(-17)*(-24))/(30*5*корень(13))=2/корень(13);

sinC=3/корень(13);

4. Середины сторон проще всего находить, как полусумму координат вершин

D=((18+(-6))/2;(-1+6)/2)=(6;2,5);L=(9;11);T=(-3;14,5);

5. Если от точки С=(0;23) отложить 2 раза вектор (1/3)*СВ=(18/3;-24/3)=(6;-8)

то получим 2 нужные точки N=(0+6;23-8)=(6;15);K=(6+6;15-8)=(12;7);

6.Вектор АL - медиана, AL=(9-(-6);11-6)=(15;5); От точки А откладываем 2/3*AL, получаем координаты точки пересечения медиан

M=(-6+(2/3)*15;6+(2/3)*5)=(4;9+1/3)

 

ПОКАЗАТЬ ОТВЕТЫ
sanyok505 sanyok505  24.05.2020 03:53

1} Найдем скалярное произведение векторов ВА ВС и АС Координаты точек A, B и C A (x a, y a) = (-6, 6)
B(x b, y b) = (18, -1)
C (x c, y c) = (0, 23)
ВА = ( 18+6,-1+6 ) = ( 24, 5)
ВС = ( 18- 0, -1-23) = ( 18, -24)
AC = {0+6,23-6}={6,17}
6} АМ=?
М ;х =[18+0}/2=9
y=-1-23/2=-12
вектор АМ[9+6;-12+18}={15;6]

 3. IBAI = корень((-24)^2+7^2)=25;IBCI = корень((-18)^2+24^2)=30;IACI = корень(6^2+17^2)=5*корень(13);

(почти точно 18:), ну в самом деле, 18^2=324, АС^2 =325... к сожалению, треугольник не прямоугольный. Прямоугольным был бы треугольник со сторонами 18,24,30)

2.очевидное замечание АВ = -ВА, скобками обозначено скалярное произведение АВ и АС;

cosA=(AB,AC)/(IABI*IACI)==(24*6+(-7)*17)/(25*5*корень(13))=1/(5*корень(13));

между прочим sinA = 18/(5*корень(13));

cosB=(ВА,BC)/(IBAI*IBCI)=((-24)*(-18)+7*24)/(25*30)=4/5; sinB=3/5

cosC=(CА,CB)/(ICAI*IBCI)=((-6)*18+(-17)*(-24))/(30*5*корень(13))=2/корень(13);

sinC=3/корень(13);

4. Середины сторон проще всего находить, как полусумму координат вершин

D=((18+(-6))/2;(-1+6)/2)=(6;2,5);L=(9;11);T=(-3;14,5);

5. Если от точки С=(0;23) отложить 2 раза вектор (1/3)*СВ=(18/3;-24/3)=(6;-8)

то получим 2 нужные точки N=(0+6;23-8)=(6;15);K=(6+6;15-8)=(12;7);

6.Вектор АL - медиана, AL=(9-(-6);11-6)=(15;5); От точки А откладываем 2/3*AL, получаем координаты точки пересечения медиан

M=(-6+(2/3)*15;6+(2/3)*5)=(4;9+1/3)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика