Дан куб abcda1b1c1d1. а)постройте сечение куба плоскостью, проходящей через точки a,b и c1. б)найдите угол между прямой ac1 и плоскостью bcc1.

Mirror11 Mirror11    2   04.08.2019 08:30    4

Ответы
Аоаоаоа13362727182 Аоаоаоа13362727182  14.08.2020 07:58
А) Примем ребро куба за а.
Сечение куба плоскостью, проходящей через точки A,B и C1, представляет собой прямоугольник с одной стороной, равной а, и другой, равной а√2.

б) АС1 - это диагональ куба. Её длина равна √(а²+а²+а²) = а√3.
Угол между прямой AC1 и плоскостью BCC1 - это угол АС1В.
sin(AC1B) = a/(a√3) = 1/√3 ≈  0.57735.
Этому синусу соответствует угол  0,61548 радиан или 35,26439°.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика