Конусом (точнее, круговым конусом)называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости этого круга,— вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис. Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса . В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса Теорема. Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса. Доказательство. Пусть - плоскость, параллельная плоскости основания конуса и пересекающая конус . Преобразование гомотетии относительно вершины конуса, совмещающее плоскость с плоскостью основания, совмещает сечение конуса плоскостью с основанием конуса. Следовательно, сечение конуса плоскостью есть круг, а сечение боковой поверхности – окружность с центром на оси конуса. Теорема доказана.