Близнецами называются такие числа, которые отличаются всего на 2. Например, 11 и 13, а также 5 и 3 или 599 и 601. Если бесконечность ряда чисел была доказана множество раз начиная с античности, то бесконечность чисел-близнецов находится под во Начиная с 2, среди чисел нет четных, а начиная с 3 — делящихся на три. Соответственно, если вычесть из ряда все, подходящие под «правила деления», то количество возможных близнецов становится все меньше. Единственный модуль для формулы нахождения таких чисел — 6, а формула выглядит следующим образом: 6n±1.

pomoshvdorogep0arzo pomoshvdorogep0arzo    1   12.05.2020 18:17    0

Ответы
musinda musinda  12.05.2020 18:30

Все пары чисел-близнецов, кроме (3, 5), имеют вид {\displaystyle 6n\pm 1,} так как числа с другими вычетами по модулю 6 делятся на 2 или на 3. Если учитывать также делимость на 5, то окажется, что все пары близнецов, кроме первых двух, имеют вид {\displaystyle 30n\pm 1}, {\displaystyle 30n+12\pm 1} либо {\displaystyle 30n+18\pm 1}. Для любого целого {\displaystyle m\geqslant 2}пара {\displaystyle (m,m+2)} является парой чисел-близнецов тогда и только тогда, если {\displaystyle 4[(m-1)!+1]+m} делится на {\displaystyle m(m+2)} (следствие теоремы Вильсона).

Первые числа-близнецы[1]:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Наибольшими известными близнецами являются числа {\displaystyle 2996863034895\cdot 2^{1290000}\pm 1}[2]. Они были найдены в сентябре 2016 года в рамках проекта добровольных вычислений PrimeGrid[3][4].

Предполагается, что таких пар бесконечно много, но это не доказано. По первой гипотезе Харди — Литтлвуда (англ.), количество {\displaystyle \pi _{2}(x)} пар близнецов, не превосходящих {\displaystyle x}, асимптотически приближается к

{\displaystyle \pi _{2}(x)\sim 2C_{2}\int \limits _{2}^{x}{\frac {dt}{(\ln t)^{2}}},}

где {\displaystyle C_{2}} — константа близнецов:

{\displaystyle C_{2}=\prod _{p\geq 3}\left(1-{\frac {1}{(p-1)^{2}}}\right)\approx 0.6601618158468695739278121100145\ldots }[5]

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика