5^(х+1)=2^(3х-1) решить
!
ребёнок лезет на стену! , вы все можете!

KarinaNedilko0564 KarinaNedilko0564    3   28.09.2019 21:06    0

Ответы
даха144 даха144  11.08.2020 08:54

ответ: x = (1 + log2(5)) / (3 - log2(5))

или x = 1 / lg(1.6)

Объяснение: (зачем лезть на стену; на стене вряд ли нарисовано решение) показательное уравнение... очень полезна для понимания графическая иллюстрация (нарисовать по точкам графики обеих показательных функций, основания больше единицы, обе функции возрастают, составить таблички и соединить точки... решение или само получится или станет очевидно, что его нет, например)

аналитическое решение (без рисования графиков):

основания разные; показатели степени разные... только логарифмировать обе части равенства по любому основанию... например, 2... ( log2(2)=1 )

log2(5^(х+1)) = log2(2^(3х-1))

(x+1)*log2(5) = 3x-1

x*log2(5) - 3x = -1 - log2(5)

x*(3 - log2(5)) = 1 + log2(5)

x = (1 + log2(5)) / (3 - log2(5))

это и есть ответ...

но можно его чуть преобразовать...

1 + log2(5) = log2(2) + log2(5) = log2(10)

3 - log2(5) = log2(8) - log2(5) = log2(8/5) = log2(1.6)

x = log2(10) / log2(1.6)

или так можно записать:

х = log по основанию 1.6 (10)

или прологарифмировать по основанию 10... ( 3*lg(2) = lg(8) )

lg(5^(х+1)) = lg(2^(3х-1))

(х+1)*lg(5) = (3x-1)*lg(2)

x * lg(5) - x * lg(8) = -lg(2) - lg(5)

x * (lg(8) - lg(5)) = lg(2) + lg(5)

x * lg(8/5) = lg(10)

x = 1 / lg(8/5) или

x = 1 / lg(1.6) или

x = log по основанию 1.6 числа (10)

это формула перехода к новому основанию

как больше нравится...

ПОКАЗАТЬ ОТВЕТЫ
геля569878 геля569878  11.08.2020 08:54

x=log_{1,6} 10

Пошаговое объяснение:

5^{x+1} =2^{3x-1} \\5^{x}*5=\frac{2^{3x}}{2} \\5^{x} *5*2=2^{3x}\\5^{x} *10=8^{x} \\\frac{8^{x} }{5^{x} }=10 \\(\frac{8}{5} )^{x} =10\\1,6^{x}=10\\ x=log_{1,6} 10

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика