3х-х (в кводрате)+2х(в кводрате)=х 2х(в кводрате)+3х=х-х(в кводрате) 2 2 3-х 3-х №3 5х-7=4х-3 №4 2х+3=3х+2 х-3 х х+2 х №5 4 - 5 = 1 №6 5y+13 - 4-6y = 3 x+3 3-x x-3 5y+4 3y-1

grachikovaleksei grachikovaleksei    3   26.05.2019 17:50    1

Ответы
W1LDOR W1LDOR  23.06.2020 05:49
1) \frac{3x-x^2}{2}+ \frac{2x^2}{2}=x
\frac{3x-x^2+2x^2-2x}{2}=0
x^2+x=0
x*(x+1)=0
x_1=0
x+1=0
x_2=-1

2) \frac{2x^2+3x}{3-x} = \frac{x-x^2}{3-x}
\frac{2x^2+3x}{3-x} - \frac{x-x^2}{3-x}=0
2x^2+3x-x+x^2=0
3x^2+2x=0
x*(3x+2)
x_1=0
3x+2=0
3x=-2
x_2= -\frac{2}{3}

3) \frac{5x-7}{x-3} = \frac{4x-3}{x}
\frac{5x-7}{x-3} - \frac{4x-3}{x} =0
5x^2-7x-4x^2+3x+12x-9=0
x^2+8x-9=0
по теореме Виета x_1=-9
                            x_2 = 1

4) \frac{2x+3}{x+2}= \frac{3x+2}{x}
\frac{2x+3}{x+2}-\frac{3x+2}{x}=0
2x^2+3x-3x^2-2x-6x-4=0
-x^2-5x-4=0
x^2+5x+4=0
По теореме Виета x_1 = -4
                            x_2=-1

5) \frac{4}{x+3}- \frac{5}{3-x} = \frac{1}{x-3}
\frac{4}{x+3}- \frac{5}{3-x} - \frac{1}{x-3}=0
4x-12+5x+15-x-3=0
8x=0
x=0

6) \frac{5y+13}{5y+4}- \frac{4-6y}{3y-1}=3
\frac{5y+13}{5y+4}- \frac{4-6y}{3y-1}-3 =0
15y^2+39y-5y-13-20y+30y^2-16+24y-45y^2-36y+15y+12=0
17y=-17
y=-1
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика