24 ! из шести стержней длины 3 склеили треугольную пирамиду. на рёбра пирамиды сели три мухи. оказалось, что расстояние между каждыми двумя из этих мух (измеряемое кратчайшим путем по рёбрам пирамиды) не меньше r. при каком наибольшем r такое возможно?

Алия0051 Алия0051    1   13.09.2019 03:00    0

Ответы
ynifar ynifar  26.08.2020 19:57
Пусть R > 3, тогда никакие две мухи не сидят на одном ребре. Каждое ребро принадлежит двум граням, значит, из трёх рёбер какие-то два лежат в одной грани (в противном случае граней должно быть не меньше 2 * 3 = 6, а их всего 4. Рассмотрим пути между мухами, которые сидят в этой грани.

Эта грань — треугольник с периметром P = 3 * 3 = 9. Между мухами, сидящими в этой грани, есть два пути (см. рисунок, красный и зелёный), суммарная длина которых равна 9. Значит, кратчайший путь не длиннее 9/2 = 4,5.

Пример, как могут сидеть мухи, чтобы R было равно 4,5, на второй картинке.
24 ! из шести стержней длины 3 склеили треугольную пирамиду. на рёбра пирамиды сели три мухи. оказал
24 ! из шести стержней длины 3 склеили треугольную пирамиду. на рёбра пирамиды сели три мухи. оказал
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика