2 + 2*10*20*30*40*50*60*70*90*90*80*70*60*50*40*30*20*10​

Rorshach Rorshach    1   16.08.2020 04:29    0

Ответы
Br0shn1k Br0shn1k  15.10.2020 15:58

Пошаговое объяснение:

2(1+20×30×40×50×60×70×80×90×90×80×70×60×50×40×30×20×10) = 2,63364×10^29

ПОКАЗАТЬ ОТВЕТЫ
прииииииип прииииииип  15.10.2020 15:58
2 + 2•10•20•30•40•50•60•70•90•90•80•70•60•50•40•30•20•10
1) Здесь 17 сомножителей, заканчивающимся на 0. Можно сразу выделить один сомножитель 10^17 (10 в 17 степени)
2 + 2•1•2•3•4•5•6•7•9•9•8•7•6•5•4•3•2•1•10^17

2) Можно выделить группу повторяющихся сомножителей:
1•2•3•4•5•6•7•9 и 9•8•7•6•5•4•3•2•1. Эти группы идентичны, поскольку от перемены мест сомножителей произведение не меняется.
Пусть а = 1•2•3•4•5•6•7•9. Тогда
1•2•3•4•5•6•7•9•9•8•7•6•5•4•3•2•1 =
= а^2
Тогда запишем первоначальное выражение:
2 + 2 • а^2 • 10^17

3) а = 1•2•3•4•5•6•7•9 =
= 24•30•63 = 45360 = 4536 • 10
а^2 = (4536 • 10)^2 = 20 575 296 • 10^2

4) Перепишем первоначальное выражение:
2 + 2 • а^2 • 10^17 =
= 2 + 2 • 20 575 296 • 10^2 • 10^17 =
= 2 + 2 • 20 575 296 • 10^19 =
= 2 + 41 150 592 • 10^19

Получится число:
411505920000000000000000002
(цифры 41150592, 18 нулей и 2 в разряде единиц)
То есть
411 505 920 000 000 000 000 000 002

Число, начинающееся на 1 и заканчивающееся 24 нулями называется септиллион.
Полученное число читается как:
411 септиллионов 505 секстиллионов 920 квинтиллионов 2
Потому что в разряде единиц этого числа стоит 2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика