17. пять команд сыграли футбольный турнир. каждая сыграла с каждой ровно по одному разу. за победу давалось 3 очка, за ничью — 1 очко, за поражение — 0 очков. победитель турнира набрал столько же очков, сколько и остальные 4 команды вместе взятые. сколько было ничейных матчей в этом турнире?
т.е. всего было разыграно более 20 очков, и не более 30
команда победитель сыграла 4 матча, а значит она могла набрать не более 4 * 3 = 12 очков, значит разыграно было не более 12 * 2 = 24 очка
если она хоть раз сыграла в ничью, то она набрала 3 * 3 + 1 = 10
тогда всего очков было бы разыграно 10 * 2 = 20 - чего быть не может (это означало бы, что все матчи сыграны в ничью)
значит команда победитель набрала 12 очков
всего было разыграно 24 очка
в 6 матчах, в которых не участвовала первая было разыграно 12 очков, значит по два очка в каждом матче, т.к. не менее чем два в каждом, а 12 : 6 = 2
значит игр в ничью было сыграно 6
ответ: 6 матчей