168. Напишите уравнение касательной к графику функции у - fх) в точке, абсцисса которой равна х,: a) f(x) = 3 - x2, x, = 1;

Angelina781 Angelina781    2   10.01.2022 14:03    0

Ответы
Danich20 Danich20  10.01.2022 14:10

Я не давно решала на уроке это уравнение, твоё решить сложно..., Попробуй решить своё на этом же примере...

Пошаговое объяснение:

Задание:

Напишите уравнение касательной к графику функции у=f(x)в точке, абсцисса которой равна х0:f(x)=4x2+x-1,x0=2

Уравнение касательной, проведенной к графику функции y=f(x) в точке x0, имеет вид: y=f(x0)+ f'(x0)(x-x0), где f(x0) - значение функции f(x) в точке х0, f'(x0) - значение производной данной функции в точке х0.

1) Найдем значение функции f(x) в точке х0: f(x0)=4(х0)^2+x0-1=4*(2)^2+2-1=4*4+2-1=17;

2) Найдем производную функции f(x): f'(x)=4*2*x+1=8x+1;

3) Найдем значение производной f'(x) в точке х0: f'(x0)=8*х0+1=8*2+1=17;

4) Подставим найденные значения f(x0) и f'(x0) в уравнение касательной: y=f(x0)+ f'(x0)(x-x0) = 17+17*(х-2) = 17+17х-34 = 17х-17.

ПОКАЗАТЬ ОТВЕТЫ
Морго11 Морго11  10.01.2022 14:10

Пошаговое объяснение:

f(x)=3-x^2\ \ \ \ \ x_0=1 \ \ \ \ \ y_k=?\\y_k=y(x_0)+y'(x_0)*(x-x_0)\\y(x_0)=y(1)=3-1^2=3-1=2.\\y'(x_0)=(3-x^2)'=-2x\\y'(1)=-2*1=-2.\ \ \ \ \Rightarrow\\y_k=2+(-2)*(x-1)=2-2x+2=-2x+4.

ответ: yk=-2x+4.


168. Напишите уравнение касательной к графику функции у - fх) в точке, абсцисса которой равна х,: a)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика