Одним из признаков ромба является то, что его диагонали взаимно перпендикулярны. В виде теоремы данный признак формулируется так:
Если диагонали параллелограмма перпендикулярны друг другу, то такой параллелограмм является ромбом.
Доказательство этой теоремы сводится к тому, чтобы доказать, что у такого параллелограмма стороны равны. Именно равенство сторон параллелограмма позволяет заключить, что это ромб.
Таким образом, нам дан параллелограмм, у которого диагонали взаимно перпендикулярны. Требуется доказать, что у такого параллелограмма все стороны равны.
С правлна будет
С
Пошаговое объяснение:
Одним из признаков ромба является то, что его диагонали взаимно перпендикулярны. В виде теоремы данный признак формулируется так:
Если диагонали параллелограмма перпендикулярны друг другу, то такой параллелограмм является ромбом.
Доказательство этой теоремы сводится к тому, чтобы доказать, что у такого параллелограмма стороны равны. Именно равенство сторон параллелограмма позволяет заключить, что это ромб.
Таким образом, нам дан параллелограмм, у которого диагонали взаимно перпендикулярны. Требуется доказать, что у такого параллелограмма все стороны равны.