ответ:
cos(pi/2+x)=-sinx
cos2x=1-2sin^2x
1-2sin^2x+√2*sinx+1=0
sinx=t
1-2t^2+t√2+1=0
-2t^2+t√2+2=0
d=2-4*2(-2)=18
t1=(-√2+3√2)/(-4)=2v2/(-4)=-v2/2
sinx=-√2/2; x=-pi/4=2pik и x=-3pi/4+2pik
t2=(-√2-3√2)/(-4)=√2-не подходит так как |t|≤1
смотрю корни на интервале от -5pi до -3.5pi
это будут x=-5pi+pi/4=-19pi/4
и x=-5pi+3pi/4=-17pi/4
подробнее - на -
пошаговое объяснение:
ответ:
cos(pi/2+x)=-sinx
cos2x=1-2sin^2x
1-2sin^2x+√2*sinx+1=0
sinx=t
1-2t^2+t√2+1=0
-2t^2+t√2+2=0
d=2-4*2(-2)=18
t1=(-√2+3√2)/(-4)=2v2/(-4)=-v2/2
sinx=-√2/2; x=-pi/4=2pik и x=-3pi/4+2pik
t2=(-√2-3√2)/(-4)=√2-не подходит так как |t|≤1
смотрю корни на интервале от -5pi до -3.5pi
это будут x=-5pi+pi/4=-19pi/4
и x=-5pi+3pi/4=-17pi/4
подробнее - на -
пошаговое объяснение: