1)плоскость сечения шара делит его радиус, перпендикулярный этой плоскости, в отношении 1: 3 (считая от центра). площадь поверхности шара равна 96. найдите площадь сечения 2)шар пересечен плоскостью, отстоящей от центра шара на корень из 10\п. найдите площадь сечения, если площадь поверхности шара равна 78.

inybax inybax    3   15.09.2019 13:50    8

Ответы
умнаяпсина1 умнаяпсина1  04.08.2020 08:55
1) Площадь поверхности шара  S=4πR² = 96  - по условию
   4πR² = 96
   πR² = 24
  
R^2 = \frac{24}{ \pi } \\ \\ R= \sqrt{ \frac{24}{ \pi } } =2 \sqrt{ \frac{6}{ \pi } }

Радиус R=OK разделен в отношении 1:3 (считая от центра)
\frac{OC}{CK} = \frac{1}{3}
CK = 3*OC
R = OC + CK = OC + 3*OC=4*OC

R=2 \sqrt{ \frac{6}{ \pi } }=4*OC \\ \\ OC = \frac{1}{2} \sqrt{ \frac{6}{ \pi } }

Прямоугольный ΔOCM
OM = R=2 \sqrt{ \frac{6}{ \pi } } \\ \\ OC =\frac{1}{2} \sqrt{ \frac{6}{ \pi } }
Теорема Пифагора
OM² = OC² + CM²
CM^2 = OM^2 - OC^2 \\ \\ CM^2=(2 \sqrt{ \frac{6}{ \pi } } )^2-(\frac{1}{2} \sqrt{ \frac{6}{ \pi } } )^2= \\ \\ =\frac{24}{ \pi } - \frac{1}{4} * \frac{6}{ \pi } = \frac{24}{ \pi } - \frac{3}{2 \pi } = \frac{45}{2 \pi }

Площадь сечения 
S_c= \pi r^2 = \pi CM^2 = \pi * \frac{45}{2 \pi } =22,5

2)Площадь поверхности шара  S=4πR² = 78  - по условию
   4πR² = 78
   πR² = 19,5
   R^2 = \frac{19,5}{ \pi }

  Прямоугольный ΔOCM
   OC = \sqrt{ \frac{10}{ \pi } }
   OM² = R²

Теорема Пифагора
OM² = OC² + CM²
CM^2 = OM^2 - OC^2 = \frac{19,5}{ \pi }- (\sqrt{ \frac{10}{ \pi } }) ^2= \\ \\ = \frac{19,5}{ \pi } - \frac{10}{ \pi } = \frac{9,5}{ \pi }
Площадь сечения

S_c = \pi r^2 = \pi *CM^2= \pi *\frac{9,5}{ \pi} =9,5

1)плоскость сечения шара делит его радиус, перпендикулярный этой плоскости, в отношении 1: 3 (считая
1)плоскость сечения шара делит его радиус, перпендикулярный этой плоскости, в отношении 1: 3 (считая
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика