1,5x^2-36x+81 * ln x-8 найдите точку минимума. решить

Дмыч Дмыч    2   31.07.2019 05:00    1

Ответы
artemonimus artemonimus  28.09.2020 12:09
Функция определена и непрерывна на всей числовой прямой. Находим производную и решаем уравнение f'(x)=0
f'(x)=(1,5x²-36x+81lnx-8)'=3x-36+(48/x)=0
3x²-36x+81=0 |:3
x²-12x+27=0
D=(-12)²-4*27=144-108=36
x=(12-6)/2=3       x=(12+6)/2=9
Нашли критические точки.
Отложим на числовой прямой найденные критические точки и определим знак производной на интервалах
             +                         -                          +
(3)(9)
При переходе через точку х=3 производная меняет знак с "+" на "-" следовательно в этой точке функция достигает максимума, а при переходе через точку х=9 с "-" на "+" значит в этой точке функция достигает минимума. 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика