Задания суммативного оценивания за 2 четверть по предмету «Математика»

1 вариант

1.Сравните дроби:

а) 6/8 и 5/8; b) 1 и 4/5; c)1/4 и 1/5 ; d) 1 и 8/7 .

[4]

2. Среди чисел 1 2/7 ; 3 1/2 ; 7/9 ; 7 1/2 найдите взаимно обратные. Выпишите их и докажите свой выбор.

[2]

3.Упростите выражение:

7/8∙8/7∙9/10∙10/9∙11/12∙12/11∙13/14∙14/13∙15/17

[2]

4. Решите уравнение: (12 5/13+у)-9 9/13=7 7/13.

[4]

5. Найдите периметр прямоугольника со сторонами 4 1/( 2) м и 2 3/5 м.

[4]

6. Вычислите: 2 1/3+4 1/10:(2 7/15-5/12)∙1 1/4

[4]

Задания суммативного оценивания

за 2 четверть по предмету «Математика»

2 вариант

1.Сравните дроби:

а) 5/9 и 7/9; b) 1 и 8/11; c) 1/6 и 1/5 ; d) 1 и 7/5 .

[4]

2. Среди чисел 1 2/3 ; 2 3/5 ; 5/13 ; 2 1/3 найдите взаимно обратные. Выпишите их и объясните свой выбор.

[2]

3.Упростите выражение:

6/7∙7/6∙8/9∙9/8∙10/11∙11/10∙12/13∙13/12∙14/19

[2]

4.Решите уравнение: (11 2/11+у)-5 4/11=8 8/11.

[4]

5. Найдите периметр прямоугольника со сторонами 31/2 м и 12/3 м.

[4]

6. Вычислите: 4 5/12-1 1/2:(2 1/6+8/15)∙1 4/5

[4]

даю 50 б

missvaleria2 missvaleria2    3   20.12.2020 10:07    29

Ответы
laowiskskz laowiskskz  22.12.2023 13:30
Добрый день, я буду играть роль вашего школьного учителя по математике. Давайте по порядку решим задания суммативного оценивания. Если у вас возникнут вопросы, не стесняйтесь задавать их.

1. Задание:
Сравните дроби:
а) 6/8 и 5/8;
б) 1 и 4/5;
в) 1/4 и 1/5 ;
г) 1 и 8/7 .

Для сравнения дробей нужно либо привести их к общему знаменателю, либо сравнивать их в десятичной форме. Здесь все дроби уже имеют одинаковый знаменатель, поэтому мы можем сравнивать их по числителю.

Ответ:
a) 6/8 > 5/8
б) 1 < 4/5
в) 1/4 < 1/5
г) 1 = 8/7 (работаем либо с десятичной записью, либо сравниваем числитель и знаменатель)

2. Задание:
Среди чисел 1 2/7, 3 1/2, 7/9, 7 1/2 найдите взаимно обратные. Выпишите их и докажите свой выбор.

Взаимно обратные числа - это два числа, произведение которых равно единице. Мы можем найти взаимно обратные числа, взяв обратные значения числам, т.е. числитель и знаменатель меняются местами.

Ответ:
а) 7/9 и 9/7 (произведение 7/9 * 9/7 = 1)
б) 3 1/2 и 2/7 (произведение 3 1/2 * 2/7 = 1)

3. Задание:
Упростите выражение:
7/8 * 8/7 * 9/10 * 10/9 * 11/12 * 12/11 * 13/14 * 14/13 * 15/17.

Выражение содержит множество дробей, но заметим, что многие из них являются обратными значениями друг друга. Умножение любой дроби на ее обратную дает 1, поэтому расчет можно с большим удобством упростить, сократив многие дроби.

Ответ:
Упрощенное выражение равно 15/17. (после сокращения дробей)

4. Задание:
Решите уравнение:
(12 5/13 + у) - 9 9/13 = 7 7/13.

Чтобы избавиться от дробей смешанных чисел, мы должны их привести к неправильным дробям и сократить знаменатель. После этого мы просто складываем числители и оставляем общий знаменатель.

Ответ:
(12*13 + 5)/(13) + у - (9*13 + 9)/(13) = (7*13 + 7)/(13)
(156 + 5)/(13) + у - (117 + 9)/(13) = (91 + 7)/(13)
161/13 + у - 126/13 = 98/13
161 + 13 * у - 126 = 98
13 * у = 63
у = 63/13

5. Задание:
Найдите периметр прямоугольника со сторонами 4 1/2 м и 2 3/5 м.

Периметр прямоугольника равен сумме его сторон. Мы можем привести смешанные числа к неправильной дроби и сложить их.

Ответ:
Периметр равен (4 1/2 + 2 3/5) * 2.

Приводим смешанные числа к неправильной дроби:
(4*2 + 1)/(2) + (2*5 + 3)/(5) = (8 + 1/2 + 10/5 + 3/5)
8 1/2 + 13/5 = (8*5 + 1*5 + 13)/(2*5)
43/2 + 13/5 = (43*5 + 2*5 + 13)/(2*5)
215/10 + 15/10 = (215 + 15)/(10)
230/10 = 23

Периметр равен 23 м.

6. Задание:
Вычислите:
2 1/3 + 4 1/10 : (2 7/15 - 5/12) * 1 1/4

Для начала нужно решить выражение в скобках, затем производить операции с остальными числами по очереди (деление, умножение, сложение).

Ответ:
Раскрываем скобки:
2 1/3 + 4 1/10 : (2 7/15 - 5/12) * 1 1/4
2 1/3 + 4 1/10 : (2*12 + 7)/(15*12) - 5/12 * 5/(12*15) * 1 1/4
2 1/3 + 4 1/10 : (24 + 7)/(15*12) - 5/12 * 1/3 * 5/(12*5) * 1 1/4
2 1/3 + 4 1/10 : 31/180 - 1/36 * 1/3 * 1/12 * 5/(12*5) * 1 1/4
2 1/3 + 4 1/10 : 31/180 - 1/36 * 1/3 * 1/12 * 5/60 * 7/4
2 1/3 + 4 1/10 : 31/180 - 1/36 * 7/36
2 1/3 + 4 1/10 : 31/180 - 7/1296
2 1/3 + 4 1/10 : 31/180 - 63/1296
2 1/3 + 4 1/10 : 31/180 - 63/1296
(6*10 + 1)/(30) + (4*30 + 1)/(10*30) : (31*1296 + 180)/(180*1296) - 63/1296
61/30 + 121/300 : 40176/23265 - 63/1296
(61*300 + 30)/(30*300) + 121/300 : 40176/23265 - 63/1296
18300/900 + 121/300 : 40176/23265 - 63/1296
20333/900 : 40176/23265 - 63/1296
20333/900 : (40176 - 18585)/(23265)
20333/900 : 21591/23265
20333/900 * 23265/21591
2 817 545/19 512

Ответ:
Округляя ответ до ближайшего целого числа, получается 281 7545/19512.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме История