1) Модель Мальтуса - Согласно модели, предложенной Мальтусом, скорость роста пропорциональна текущему размеру популяции, то есть описывается дифференциальным уравнением: x ˙ = αx
2) Модель Бонхёффера—ван дер Поля - Модель, предложенную в статье Ричарда ФитцХью 1961 года, принято рассматривать как классический пример исследования концептуальных моделей быстро-медленных систем. В канонической форме она записывается как: εx ¨ + ( x² − 1 ) x ˙ + x − by − a = 0
3) Система хищник-жертва - Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x {\displaystyle x} x, число лис y {\displaystyle y} y. Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки — Вольтерры:
4) Дескриптивная модель: моделирование движения кометы - моделирование движения кометы вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.
1) Модель Мальтуса - Согласно модели, предложенной Мальтусом, скорость роста пропорциональна текущему размеру популяции, то есть описывается дифференциальным уравнением: x ˙ = αx
2) Модель Бонхёффера—ван дер Поля - Модель, предложенную в статье Ричарда ФитцХью 1961 года, принято рассматривать как классический пример исследования концептуальных моделей быстро-медленных систем. В канонической форме она записывается как: εx ¨ + ( x² − 1 ) x ˙ + x − by − a = 0
3) Система хищник-жертва - Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x {\displaystyle x} x, число лис y {\displaystyle y} y. Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки — Вольтерры:
4) Дескриптивная модель: моделирование движения кометы - моделирование движения кометы вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.