Машинное обучение (Machine Learning) это тренировка математической модели на исторических данных для того, чтобы прогнозировать какое-то событие или явление на новых данных. То есть попытка заставить алгоритмы программ совершать действия на основе предыдущего опыта, а не только на основе имеющихся данных.
Для обучения нужны исторические данные (обучающая выборка) и значение целевой переменной (то, что прогнозируем), которое соответствует заданным историческим данным. Модель наблюдает и находит зависимости между данными и целевой переменной. Эти зависимости используются моделью для нового набора данных, чтобы прогнозировать целевую переменную, которая неизвестна.
Машинное обучение включает в себя целый набор методов и алгоритмов, которые могут предсказать какой-то результат по входным данным. Например, у вас есть какая-то информация по тому, сколько стоили ценные бумаги в каждый момент из какого-то длинного промежутка времени, алгоритмы машинного обучения могут предсказать, сколько эти бумаги будут стоить в будущем.
Алгоритмов машинного обучение большое множество: одни эффективны для решения одного типа задач задач, вторые — для другого. Важно не путать машинное обучение, нейросети и искусственный интеллект, это принципиально разные вещи. Обучить искусственный интеллект можно не только методами машинного обучения, а кроме нейросетевых алгоритмов есть ещё и классическое обучение, и обучение с подкреплением.
Объяснение:
Машинное обучение (Machine Learning) это тренировка математической модели на исторических данных для того, чтобы прогнозировать какое-то событие или явление на новых данных. То есть попытка заставить алгоритмы программ совершать действия на основе предыдущего опыта, а не только на основе имеющихся данных.
Для обучения нужны исторические данные (обучающая выборка) и значение целевой переменной (то, что прогнозируем), которое соответствует заданным историческим данным. Модель наблюдает и находит зависимости между данными и целевой переменной. Эти зависимости используются моделью для нового набора данных, чтобы прогнозировать целевую переменную, которая неизвестна.
Машинное обучение включает в себя целый набор методов и алгоритмов, которые могут предсказать какой-то результат по входным данным. Например, у вас есть какая-то информация по тому, сколько стоили ценные бумаги в каждый момент из какого-то длинного промежутка времени, алгоритмы машинного обучения могут предсказать, сколько эти бумаги будут стоить в будущем.
Алгоритмов машинного обучение большое множество: одни эффективны для решения одного типа задач задач, вторые — для другого. Важно не путать машинное обучение, нейросети и искусственный интеллект, это принципиально разные вещи. Обучить искусственный интеллект можно не только методами машинного обучения, а кроме нейросетевых алгоритмов есть ещё и классическое обучение, и обучение с подкреплением.