Построить и записать алгоритм вычисления cos(x) для действительного числа x с точностью ε с использованием рекурсии

svetavladimirovaaa svetavladimirovaaa    2   07.06.2019 13:00    15

Ответы
otegenovaaina2 otegenovaaina2  01.10.2020 21:26
Cos(2x) = 2 cos(x) cos(x) - 1
cos(x) = 1 - x^2/2 + x^4/24 - x^6/720 + ...
1 - cos(2x) = 2 sin(x) sin(x)
sin(x) < 2 x / Pi

| 1 - cos(2x) | < 2 (2x/Pi)^2 = 8 x^2 / Pi^2
Если x^2 < Pi^2 eps / 8, то |1-cos(2x)|<eps

Предложение: делаем рекурсивный спуск по формуле cos(x)=2cos(x/2)^2 - 1, пока x > Pi sqrt(eps)/2, затем возвращаем 1-x^2/2. Оценка x < Pi sqrt(eps)/2 делалась для неравенства |1 - cos(x)| < eps, но возвращаем не просто 1, а 1-x^2/2 — до квадратичного члена, то есть с большей точностью. Кстати, Pi/2 < 2.
Код JavaScript
function cos1(x, eps)
{   if(Math.abs(x) < 2*Math.sqrt(eps)) return (1-x*x/2);  
var c = cos1(x/2, eps);  
return (2*c*c - 1);
} cos(0.5, 0.001);

Внимательно посмотрев на эту реализацию, можно увидеть хвостовую рекурсию, которую можно представить в виде цикла, что предпочтительнее, потому что не требует памяти под стек вызовов и потому является быстрее. Но это выходит за пределы рассматриваемой задачи.

P.S. Оценка рядом Маклорена-Тейлора при малых аргументах предпочтительнее: сходится быстрее.


другой вариант
Можно посчитать по ряду Тейлора, стандартно превратив итерацию в хвостовую рекурсию. Для этого используется вс функция, которой в качестве дополнительных (по сравнению с изначальной функцией) аргументов передаются все величины, которые хочется помнить (в данном случае номер члена i, очередной член a и вычисленную сумму s).

Код Haskell
cos' eps x = helper 1 1 0  
  where helper i a s          
   | abs a < eps   = s        
     | otherwise     = helper (i + 2) newa (s + a)              
   where newa = - a * x^2 / (i * (i + 1))

ряд Тейлора в данном случае удовлетворяет признаку Лейбница (ну, с оговорками), поэтому можно останавливаться, когда очередной член стал меньше эпсилона.
Код JavaScript
<script type="text/javascript"> function Cosine(x,eps)
{     function CosTaylor(x,n,an)  
  {         var an1 = (-1)*an*x*x/(2*n*(2*n-1));        
  if (Math.abs(an1) < eps) return an + an1;        
else          
  { return an + CosTaylor(x,n+1,an1); }  
  }      
return CosTaylor(x,1,1); }
</script>   <button onclick="alert( Cosine(0.75,0.001) )">Пример для x=0.75 и eps=0.001</button>
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Информатика